Robust Reinforcement Learning
نویسندگان
چکیده
This letter proposes a new reinforcement learning (RL) paradigm that explicitly takes into account input disturbance as well as modeling errors. The use of environmental models in RL is quite popular for both offline learning using simulations and for online action planning. However, the difference between the model and the real environment can lead to unpredictable, and often unwanted, results. Based on the theory of H(infinity) control, we consider a differential game in which a "disturbing" agent tries to make the worst possible disturbance while a "control" agent tries to make the best control input. The problem is formulated as finding a min-max solution of a value function that takes into account the amount of the reward and the norm of the disturbance. We derive online learning algorithms for estimating the value function and for calculating the worst disturbance and the best control in reference to the value function. We tested the paradigm, which we call robust reinforcement learning (RRL), on the control task of an inverted pendulum. In the linear domain, the policy and the value function learned by online algorithms coincided with those derived analytically by the linear H(infinity) control theory. For a fully nonlinear swing-up task, RRL achieved robust performance with changes in the pendulum weight and friction, while a standard reinforcement learning algorithm could not deal with these changes. We also applied RRL to the cart-pole swing-up task, and a robust swing-up policy was acquired.
منابع مشابه
Reinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملReinforcement Learning under Model Mismatch
We study reinforcement learning under model misspecification, where we do not have access to the true environment but only to a reasonably close approximation to it. We address this problem by extending the framework of robust MDPs of [2, 17, 13] to themodel-free Reinforcement Learning setting, where we do not have access to the model parameters, but can only sample states from it. We define ro...
متن کاملRobust Reinforcement Learning Control with Static and Dynamic Stability∗
Robust control theory is used to design stable controllers in the presence of uncertainties. This provides powerful closed-loop robustness guarantees, but can result in controllers that are conservative with regard to performance. Here we present an approach to learning a better controller through observing actual controlled behavior. A neural network is placed in parallel with the robust contr...
متن کاملComputer Science Technical Report Robust Reinforcement Learning Control with Static and Dynamic Stabilitya
Robust control theory is used to design stable controllers in the presence of uncertainties. By replacing nonlinear and time-varying aspects of a neural network with uncertainties, a robust reinforcement learning procedure results that is guaranteed to remain stable even as the neural network is being trained. The behavior of this procedure is demonstrated and analyzed on two simple control tas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 17 2 شماره
صفحات -
تاریخ انتشار 2000